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In this paper the use of absorbing boundary conditions is 
investigated for the numerical simulation of gravity waves on an incom- 
pressible, inviscid fluid in three dimensions. A review of existing 
methods is given for linear and nonlinear waves, after which first- and 
second-order partial differential equations are introduced as absorbing 
boundary conditions for the linearized model. Well-posedness is 
investigated and it is shown that the reflection properties of the second- 
order equation are superior to those of the first-order equation. 0 1992 

Academic Press. Inc. 

1. INTRODUCTION 

In ocean engineering the scattering of waves on fixed and 
floating bodies is of major importance. Surface waves 
appear in many forms, from small ripples to large tidal 
waves, either with small amplitude or being high enough 
to break. Also, bodies may be small or large compared to 
the waves; they may have a simple geometry or may be 
extremely complex. Hence, a broad range of body-wave 
interactions has to be investigated, necessarily leading to 
various wave theories and body-wave models due to the 
complexity of the Navier-Stokes equations describing the 
fluid motion. 

In general, the compressibility of the water and also the 
viscous effects are of importance, but for a large class of 
problems they are negligible and the fluid may be assumed 
ideal. This is especially the case for large bodies (with 
dimension typically of the order of the wave length). In this 
case the Navier-Stokes equations can be simplified 
considerably by introducing a velocity potential 4 
(with velocity v =V4). The equations describing the flow 
throughout the fluid domain Q then reduce to Laplace’s 
equation for the potential: 

v*q5 = 0, XEQ. (1.1) 

The equations describing the motion of the free surface S, 
which bounds this potential flow, are the dynamic and 
kinematic boundary conditions (see, e.g., Whitham [38]). 

These equations are nonlinear and time-dependent: 

!zf=,=V~ 
Dt on S,, (1.3) 

where xr denotes the position of a free surface particle and 
z is the vertical space coordinate with z = 0 on the still water 
level; g is the gravitational acceleration. The above equa- 
tions are the exact free surface boundary conditions, with 
the only assumptions that the fluid is ideal and the surface 
tension is absent. 

Mathematically this set of equations can be viewed in dif- 
ferent ways. Most naturally it is seen as an elliptic problem 
with time dependent boundary conditions. Hence, in most 
numerical procedures it is treated as such: the elliptic 
Laplace equation is solved at a given time level, after which 
the time dependent boundary conditions are updated to 
obtain the proper boundary conditions at the next time 
level, and so forth. On the other hand, the free surface 
problem may also be considered as a hyperbolic problem in 
propagation space, where the “appending” elliptic equation 
merely causes an integral dependency in space. 

Equations (1.1 )-( 1.3) describe waves of a dispersive 
nature and form the basis of much of our knowledge on 
dispersive systems in general. For the linearized equations 
many analytical results are available, but for the investiga- 
tion of nonlinear dispersive waves as such or their inter- 
action with surface-piercing bodies, numerical models are 
indispensable. However, the numerical simulation using the 
above equations is a difficult task, even in two dimensions, 
involving complex and time consuming algorithms. Success- 
ful schemes in two dimensions were developed by, for 
instance, Longuet-Higgins and Cokelet [24] and Vinje and 
Brevig [ 361. In both schemes a boundary integral equation 
technique is used to solve Laplace’s equation. Extensions to 
three dimensions using this technique are presented in, for 
instance, Isaacson [17] and Romate [30]. In the latter a 
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review and extensive literature can be found on the non- 
linear problem and the numerical simulation thereof. 

Periodic Boundary Condition 

One of the problems in the numerical simulation is the 
reduction of the computational domain. In general, the fluid 
domain Q will extend to infinity in the horizontal directions. 
In this case a radiation condition at infinity is required to 
make the problem well-posed. This condition states that the 
solution corresponds to outgoing waves only, and is known 
as Sommerfeld’s radiation condition [32]. For harmonic 
solutions of the linearized equations with wave number k it 
reads: 

This technique has been favoured in most two-dimen- 
sional nonlinear models. The solution is assumed to be 
periodic in space, so that the values of the unknowns on one 
vertical boundary can be set equal to those on the other 
vertical boundary of the domain. Advantages: very simple 
to implement, and artificial boundaries can be chosen at 
very short distances. Disadvantages: limited application due 
to requirement of periodicity. Longuet-Higgins and Cokelet 
[24] used periodicity for their boundary integral method to 
be able to transform the free surface to a circle. 

(krp2 (&. - ik4) + 0 as r+co. (1.4) Artzjicial Damping (Sponge Layers) 

For computational reasons, however, it is necessary to 
reduce the computational domain to a minimum, and hence 
the fluid domain Q will be truncated at some distance of the 
area of interest by artificial boundaries. To obtain a well- 
posed potential problem, boundary conditions are needed 
on the artificial boundaries as well. Also, since these boun- 
daries are artificial, one would like to have the boundary 
conditions simulate the behaviour of the excluded part of 
the fluid domain. For the free surface wave problem this last 
requirement means that surface wave approaching an artifi- 
cial boundary should be fully transmitted (“absorbed”) at 
the boundary; i.e., the boundary must be transparent, so 
that no wave reflections occur. 

Another possibility of simulating an infinite outer field at 
finite distance, is the use of artificial damping, in particular 
in the form of a sponge layer. In this method an artificial 
dissipative term is added-implicitly or explicitly-to the 
equations near the artificial boundaries of the truncated 
domain, so that outgoing waves are asborbed with as little 
wave reflection as possible. 

In this paper the use of partial differential equations as 
absorbing boundary conditions for the linearized three- 
dimensional model will be considered, as they have been 
proposed for hyperbolic equations by Engquist and Majda 
[ 123. The investigations will be restricted to the linearized 
model to facilitate the analysis of the numerical results, but 
since this analysis is meant to be a basis for future extensions 
to nonlinear problems, the theoretical development for the 
linear case will be preceded by a review of existing methods 
used for both linear and nonlinear free surface wave 
problems (Section 2). 

For free surface flow this technique was used by, e.g., 
Chan [6], who added a linear damping term to the momen- 
tum equations, in his 2D finite difference scheme. Other 
examples of the use of sponge layers can be found in, for 
instance, Larsen and Dancy [20], and Israeli and Orszag 
[18]. In both articles the authors use sponge layers in 
combination with partial differential equations to absorb 
outgoing waves. 

In combination with an integral equation method to 
solve the potential flow, the damping term must be added to 
the free surface boundary conditions. Baker, Meiron, and 
Orszag [l] added a dissipative term to both the kinematic 
and the dynamic boundary condition (in their case 
equations for the surface wave elevation q and the vortex 
sheet strength y). Specifically, 

It will be shown that for the linearized problem the 
proposed boundary conditions have very favourable reflec- 

and 

tion properties, given a certain wave frequency and that 
they will give a well-posed initial boundary value problem 
(IBVP) in the sense of Kreiss. Numerical results using the 
proposed model will not be given here, but in the accom- 
panying paper [ 5 1. 

2. SURVEY OF ABSORBING 
BOUNDARY CONDITIONS 

where v(x) is the damping coefficient and RHS is the right- 
hand side of their original equations. The damping coef- 
ficient was chosen to be quadratic in x so that the extra term 
and its derivative vanish at the point where the damping 
zone meets the computational domain. 

In the literature several methods have been proposed to 
absorb free surface waves, and some of these are reviewed 
in, e.g., [40,29]. A short description of each of these 
methods will be given. 

Betts and Mohamad [S] added the dissipative term only 
to the dynamic boundary condition in their 2D nonlinear 
model: 
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z = RHS - v(x)(q - h) (2.1) 

(2.2) 

W -_ i (Vd j’ + gz + vd = 0. 
Dt 2 
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FIG. 1. Damping zcme with linearly increasing Y. 

The Rayleigh damping term v# was specified nonzero in 
the damping zone; it increases linearly from zero at the 
beginning of the damping zone, to a given positive value at 
the end of the zone (Fig. 1). 

They studied the reflection properties for different values 
of v. For small values of v there is little dissipation and 
waves reflect almost entirely at the artificial boundary at the 
end of the damping zone. For large values of v the absorbing 
area itself will act as a boundary, and waves reflect at the 
beginning of the damping zone. An optimal value can be 
found somewhere in between. Betts and Mohamad found an 
optimal value of v = 0.4 resulting in 6% reflection when 
using a damping zone that was one wavelength long. 

Advantages of this method: easy to implement, good 
reflection properties for a wide range of frequencies. 
Disadvantages: a fairly large domain is needed for the 
damping zone (in the order of one wave length). 

Simple Far Field Solutions 

Another possibility of absorbing waves at an artificial 
boundary is the use of simple outer field solutions. In the 
outer field boundaries and boundary conditions are sim- 
plified such that analytical solutions can be found in closed 
form, usually expressed as eigenfunction expansions. At the 
artificial boundary the analytical solution is then matched 
to the solution of the computational domain. An example of 
this technique is the so-called hybrid integral equation 
method. It is described in, e.g., Liu and Abbaspour [23] for 
the 2D case, where they study the diffraction of waves by an 
infinite cylinder. They solve the potential problem in the 
interior with a boundary integral equation method and use 
an analytical solution for the outer domain satisfying the 
linearized free surface conditions, and Sommerfeld’s radia- 
tion condition at infinity [32, 23: 

+ f A; 
COS(K,(Z + h)) 

?I=1 cos(lc,h) 

. eK,.r ~ i<OI~ 
(2.4) 

The unknown coefficients A, and A,, in the expansion are 
the amplitudes of the propagating and evanescent modes in 
the solution (see next section) and are determined by the 
matching at the artificial boundary. 

Finnigan and Yamamoto [I33 use this technique for a 
porous breakwater problem (linear, 2D), Nestegard and 
Sclavounos [26] for a deep water time-harmonic radiation 
problem (also 2D), and Lin, Newman, and Yue [22] use a 
linear outer solution for nonlinear 2D computations in the 
interior. Dommermuth and Yue [lo] use an axisymmetric 
solution in the exterior, and Tsay and Liu [ 333 combine the 
linear outer solution with a finite element method in the 
interior. 

These are but a few examples of the many papers that 
have been published. Advantages of the method: for linear 
inner solutions good accuracy and, also, evanescent modes 
are absorbed. Disadvantages are: more difficult to imple- 
ment, and extension to time domain problems with more 
frequencies is complicated. 

D$,,erential Equations Matching the Outer Solution 

In the previous technique explicit expressions of the outer 
domain solutions were used for matching at the artificial 
boundary. Bayliss, Gunzburger, and Turkel [2] use the 
eigenfunction expansions of the outer domain to derive a set 
of linear partial differential equations which can be imposed 
at finite distance on an artificial boundary. The operators 
annihilate the first m terms of the expansion and thus 
replace in an implicit manner these explicit expressions. The 
lowest order operator of this set of radiation conditions 
is Sommerfeld’s equation, but here it is applied at the 
boundary. 

Sommerfeld-Orlanski 

An interesting approach for imposing Sommerfeld’s con- 
dition on artificial boundaries was published by Orlanski 
[27]. The novelty in his approach was that the phase 
velocity needed in this condition was evaluated numerically 
in the vicinity of the boundary. The main advantage of this 
method is therefore that one does not need to know in 
advance the frequency of an approaching wave. Orlanski 
used this method in a finite difference scheme for hyperbolic 
flow, and it was Chan [7] who was the first to apply it to 
a free surface flow problem. 

Yen and Hall [ 393 examined several schemes to improve 
the implementation of Chan. They also used Sommerfeld’s 
condition for both the wave elevation q and the potential 4 
in their finite difference scheme. 

Finally, in their boundary element method Lennon, Liu, 
and Liggett [21] avoided the calculation of the unknown c 
by using c = &, i.e., the phase velocity of shallow water 
waves. Romate [29] studied the reflection properties of 
Sommerfeld’s condition for various choices of c, and 
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Vichnevetsky and Pariser [35] considered higher order relates the frequency w and the wave number k and has two 
discretizations of Sommerfeld’s condition. real roots f k, leading to propagating waves (with wave 

Sommerfeld-Orlanski is probably the most widely used velocity c = o/k) and, also, an infinite number of imaginary 
technique. The condition is simple to implement and, in solutions k = f ire,. The corresponding solutions are the 
general, the results are fairly good. evanescent modes [ZS]. The evanescent modes are not 

absorbed by the boundary conditions introduced hereafter 
Partial DifSerential Equations [28], but boundary conditions for these modes can also be 

Sommerfeld’s radiation condition and the absorbing con- derived. 

ditions of Bayliss et al. are two examples of this category, To derive absorbing boundary conditions for propa- 

but these have been listed separately because of their gating waves, we need the equations describing the wave 

widespread use. Sommerfeld’s condition is a first-order propagation in (x, y)-space. These can be obtained by 

equation, and the conditions of Bayliss et al. are higher eliminating the z-dependency in Eq. (3.1 t( 3.4), resulting in 

order generalizations to absorb spherical waves. 
However, higher order generalizations of Sommerfeld’s Q(x, t) = B . cosh(k(z + h)) . $(%, t) (3.6) 

equation, to absorb plane waves in the potential free surface 
model used here, are seldom used. Most of the theory has with 2 = (x, y 
been developed for hyperbolic waves [ 11, 123, and has to be 
modified to be applicable to free surface models. For the 
(hyperbolic) nonlinear shallow water equations it was used 
by, e.g., Verboom [34]. Israeli and Orszag [ 183 compared 
this technique with the use of sponge layers. 

)‘, and the equations 

V2$ + k2$ = 0, 
a26 z+g.k.tanh(kh).$=O, 

The main advantage of this technique is that the artificial 
boundaries can be taken very close to the area of interest. 
Also it is fairly easy to predict reflection properties. In the 
next sections the use of these partial differential equations 
will be investigated. 

in 6= (%/x<O, yE[w} 

for the dependent variable 6(x, y) in propagation space. 
This setof equations has solutions of the form 

(3.7) 

(3.8) 

(3.9) 
3. LINEARIZED FREE SURFACE WAVES 

In case of small amplitude waves, the nonlinear free sur- 
face conditions may be linearized in the usual way: non- 
linear terms in 4 and q are neglected, and the conditions are 
imposed on the still water level. Introducing an artificial 
boundary of infinite length at x = 0, we want to consider the 
solution of the resulting linear model for x < 0, given by the 
following equations: 

v21p=o in Q= {xlx<O,y~lR, -h<z<O}, 

(3.1) 

For the investigations on the absorbing boundary condi- 
tions, an incident wave will be used, describing by the 
velocity potential 

&(x, t) = B.cosh(k(z + h)) &(i, t), (3.10) 

with (see Fig. 2) 

(3.11) 

aq 84 -=-- 
at an on z=O, (3.2) 

a4 
5=-g.? on z=O, 

84 &‘O on z=-h. 

The bottom will be taken horizontal. 
The typical wave phenomena of linear waves occur in 

(x, y)-space, which will be referred to as the propagation 
space. The dispersion relation of this free surface problem, 

o2 = g . k . tanh(kh), (3.5) 

S 

FIG. 2. Plane incident wave propagation in k,-direction 
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As the incident wave strikes the absorbing boundary S, The reflection coefficient R is found by substituting 
reflection will occur. The reflected wave is given by Jj + 7, into (4.3): 

(3.12) 

If a perfectly absorbing boundary condition is used on S, 
no energy will be reflected into fi = {(x, y) 1 x < 0, y E R}, 
i.e., R = 0. 

In numerical computations only approximate absorbing 
boundary conditions can be used. In two papers Engquist 
and Majda [ll, 121 proposed a theory for developing a 
hierarchy of absorbing boundary conditions for a hyper- 
bolic equation to be used on artificial boundaries. With the 
use of the dispersion relation they factorize the equation 
into first-order equations describing the propagation of 
waves along bicharacteristics. For the wave equation, for 
instance, this means that a resulting first-order equation 
describes either a left going or a right going wave but does 
not admit the other. Using the appropriate of these lirst- 
order equations as a boundary condition, they arrive at an 
exact boundary condition absorbing waves of all frequen- 
cies, from all directions. The problem, however, is that these 
first-order equations are not partial differential equations 
but pseudodifferential equations, which are not local in time 
or space. Therefore Engquist and Majda introduce Padt- 
approximants of the matching dispersion relation to obtain 
local partial differential equations as absorbing boundary 
conditions. This idea has been developed further by many 
authors, e.g., by Wagatha [37], and Higdon [15]. The 
latter presents an extension to absorb waves from different 
directions, and this idea will be applied here. 

4. FIRST-ORDER EQUATIONS 

Consider the following first-order differential equations 
on x=0: 

(4 1) 

This condition absorbs the given incident wave if a = 8 
(only lcll d 7r/2 will be considered). With 

a 
i,=r.V=cos(a)&+sin(a)n, 

ay 
(4.2) 

(4.1) can be written as 

a? ai cos(a)~+sin(tx)--- 
ay 

=o (4.3) 
X=0 

R 
- 1 + cos(a) cos(8) + sin(a) sin(o) 

BC1 = 1 + cos(a) cos(8) - sin(a) sin(d) 

1 -cos(a-8) 

1 + cos(a + 0)’ 
(4.4) 

A second first-order boundary condition that absorbs 
incident waves at angle a with the normal is 

BC2: cos(a) 5 + c =-g ~ = 0. (4.5) 
r-0 

The reflection coefficient is now given by 

R 
cos(a) - c0s(e) 

Bc2 = - cos(a) + cOs(ej (4.6) 

If we compare the magnitude of the reflection coefficients 
of the two alternatives (4.3) and (4.5), neither of the condi- 
tions has an important advantage over the other. They are 
approximately the same in magnitude for any combination 
of a and 8. 

If a = 0 (perfect absorption for waves at normal 
incidence) the conditions are exactly the same, and thus 
have the same reflection coefficient for any 0. On the other 
hand, if a = 7r/2 (tangential incidence) the equations are 
very different, and their respective reflection coefficients are, 
although of the same magnitude, of opposite sign. Equa- 
tion (4.3) becomes 

a4 8 
z+‘zj x=0 =o 

with R = - 1 for t3 # 7~12, and Eq. (4.5) reduces to 

(4.7) 

with R = 1 for 8 # ~12. 
In practically all publications equation (4.5), not (4.3) is 

used. (See, for instance, [ 11, 12,34,39] for examples on the 
use of (4.5.) In Section 3.6 we will see that indeed (4.5) is to 
be preferred. 

5. SECOND-ORDER EQUATIONS 

The first-order equations given above are very well suited 
when incident waves are involved from only one known 
direction. However, it is obvious that in most applications 

581/99,1-IO 
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either the direction is unknown in advance, so that an 
optimum value of c1 can only be guessed, or that waves 
approach the boundary from more than one direction and 
any choice of a will lead to reflection. 

Therefore, second-order differential equations will now 
be considered, to improve on the reflection properties of the 
first-order equations given above. 

Equation (4.1) annihilates waves (with phase velocity c) 
approaching the boundary at an angle c(. To annihilate 
waves from n directions an n th order differential equation 
is introduced by applying the operator L n times, with 
different choices of cx ( 1~1 6 rc/2): 

(5.1) 

In most applications only two main directions are 
involved, and therefore we will continue with IZ = 2. Now, 
using (4.5) as an approximation of (4.1), and choosing two 
directions cli (i = 1,2), we have the following second-order 
absorbing boundary condition: 

BC3: fi cos(~J;+c-& 
> I 

6 = 0. (5.2) 
i= 1 x = 0 

Here it is assumed that the waves from the two directions 
have the same frequency o, and therefore the same phase 
velocity c. The reflection coefficient R is now given by 

2 
R 

4 

cos(cY,) - cos(8) 
EC3 = - 

> i= 1 cos(a,) + cos(8) . 
(5.3) 

Equation (5.2) mvolves the second normal derivative 
a2$/jax2. However, since (5.2) will be used as a boundary 
condition of Laplace’s equation, this second derivative 
should be expressed in terms of the function 4 itself, the first 
normal derivative, the time derivatives and/or the tangential 
derivatives. This could be done by using (3.7), but in 
Section 6 it will become clear that this choice might give 
problems in actual computations. Hence a combination of 
Eq. (3.7) and (3.8) will be used. 

Subtracting Eq. (3.8) from D times (3.7), gives the 
equation: 

(5.4) 

This equation is a Klein-Gordon equation, if w2 - k2D > 0, 
and has solutions of form (3.9). The Klein-Gordon 

equation is a hyperbolic equation, but also fails into the 
dispersive class (see Whitham [ 381). 

Choosing D = c2 in (5.4) reduces this equation to the 
wave equation. But, also, the wave equation cannot be used 
as the field equation for the waves in propagation space, 
because it admits solutions which are lower order polyno- 
mials in x, y, and t. Some of these solutions may grow in 
time and spoil the solution. Therefore a different value of D 
will be used: D = cc, (where c, is the group velocity, defined 
by cg = &o/dk). This results in a special case of the mild- 
slope equation, namely for a horizontal bottom (see [9]). 

Hence, with 

826 1 827 W+ 2 -k2 J -=---- 
ax2 ( >1 cc, at2 ay2 ccR (5.5) 

(5.2) can be written as 

~~4:~.~~+b.ii~-~Z.~~+~.~ 
at2 at ax ay2 = 0, (5.6) 

X=0 

with 

a = cos(a,) cos(a,) + c/c,, 

b = c (cos(al) + cos(cr,)), 

e = c2 

6. WELL-POSEDNESS OF THE HALF-SPACE PROBLEM 

Laplace’s equation requires one boundary condition per 
boundary of the fluid domain and hence also one condition 
on each artificial boundary. However, this condition should 
render the problem well-posed, also as a time-dependent 
problem. Therefore we will investigate the well-posedness of 
the initial boundary value problem (IBVP) formulated 
in the previous sections with the proposed absorbing 
boundary conditions as boundary conditions of a half-space 
problem. 

First some of the main results for hyperbolic systems will 
be given, as described in the review of Higdon [ 161. We will 
follow his notation most of the time. See also [ 141. A delini- 
tion of well-posedness is given by Hadamard: 

DEFINITION 1. Well-posedness (Hadamard). An IBVP 
is well-posed if for all x E Q, t 2 0, a solution exists, which 
furthermore is unique and depends continuously on the 
initial and boundary data given. 

In practical cases this definition is of little use. However, 
for linear hyperbolic equations we can reformulate this into 
a more practical definition. 
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DEFINITION 2. Well-posedness (Kreiss). Consider the 
hyperbolic system 

u,=Au,+ f B,u,+Cu+d 
J=I 

(6.1) 

strictly hyperbolic and symmetric hyperbolic systems and 
equations. Strictly hyperbolic means that all eigenvalues of 
the characteristic equation are imaginary and distinct, and 
symmetric hyperbolic means that the matrices A and Bj in 
(6.1) are hermitian. It also assumes that the plane x = 0 is 
noncharacteristic. 

fort>O,andxESZ={x=(x,y)lx<O,yjEIW}.uisavector 
with n components. With initial condition 

The problem is Fourier-transformed in y and Laplace- 
transformed in t; i.e., solutions of the form 

4.x, y, 0) =f(x, YL (-7 Y) E Q (6.2) 

and boundary condition 

etx+iq.y+rr 
(6.5) 

are considered, where 5 is obtained from the dispersion rela- 
tion of (6.1). 

this problem is well-posed if for smooth coefficients and 
data the solution shows bounded growth, i.e., that its norm 
can be estimated in terms of d, f, and g (energy estimate). 

The energy estimate in terms of Sobolev norms is given in 
[16]: 

Now, a sufficient condition for well-posedness of 
(6.1)-(6.3) is given by the uniform Kreiss condition, which 
states that solutions of the form (6.5) which are purely har- 
monic in y-direction and bounded in the entire domain, 
may not grow in time. More formally: 

IlUllnx [0,7-l + IEullanx [O,T] + IIullc2 

~fWll,+ lIgllanx~o,~,+ Ildllnx~o,r,). (6.4) 

K is independent of u, d,f, and g. 

THEOREM 2. (Sufficient condition well-posedness, uni- 
form Kreiss condition). The half-space problem (6.1 t(6.3) 
is well-posed tf, after Fourier-transforming the problem in the 
y-direction with dual variable h, and Laplace-transforming it 
in the t-direction with dual variable z, the following criterion 
is satisfied: 

For more general smooth boundaries, the problem can be 
written in terms of the half-space problem defined above, by 
mapping the boundary locally onto the tangent plane at 
each point of the boundary. 

IB(rl,~)l >&>(A Re(z) b 0, WVi) = 0, (6.6) 

In order to determine a unique solution of the hyperbolic 
system, boundary conditions are needed. However, the 
choice and number of boundary conditions is not trivial, 
and an arbitrary choice can easily render the problem ill- 
posed. Sometimes choices are clear from physical inter- 
pretations, but usually this is not the case. 

where B(r], t) is the transformed boundary condition (6.3), 
and only solutions of the form (6.5) are considered with 
Re( 5) 3 0. 

To determine how many boundary conditions are needed 
on a given boundary one can use the method of charac- 
teristics. In more space dimensions this method gives 
necessary conditions for the problem to be well-posed. It 
states that: 

THEOREM 1 (Necessary condition well-posedness). For 
well-posedness of the system (6.1)-(6.2) it is necessary that 
the number of boundary conditions at a point on the boundary 
is equal to the number of ingoing characteristics at that point 
(see Gerritsen [ 141). 

It is noted that the value of l for Re(r) = 0 is defined to 
be the limit of values of 5 corresponding to Re(r) > 0. If the 
UKC is violated only for a value of r with Re(r) = 0, then 
the problem is said to be weakly ill-posed: disturbances will 
neither grow nor decay in time. This value of r is called a 
“generalized eigenvalue.” Mild instabilities can be present in 
the solution, but according to Higdon [ 151 this disadvan- 
tage is outweighed by the advantage of having small reflec- 
tion coefficients for the absorbing boundary conditions of 
order two or less. 

In one space dimension (but not in more space dimen- 
sions) this condition is also sufficient for the problem to be 
well-posed. In more dimensions two methods can be used to 
determine the well-posedness of a problem: the “energy 
method” (see [S, 14]), and the “normal mode analysis,” 
developed by Kreiss [19] and others. Both methods give 
necessary and sufficient conditions under certain restric- 
tions. 

We will now apply this theorem to the given equations, to 
determine which boundary conditions render the IBVP 
well-posed. In Eq. (5.4) the field equations (3.7) and (3.8) 
were rewritten as a Klein-Gordon equation for use in the 
boundary conditions. Therefore this equation will be taken 
as the field equation (with D = cc,): 

- atz + cc,V*& (o* - k*cc,)$= 0, 

We will use the “normal mode analysis,” which applies to 

ZEST& t>o. (6.7) 

It can be written as a first-order system by the substitution 

u1=& u*=iL u3 = L u4 = 6,, (6.8) 



142 J. E. ROMATE 

resulting in a symmetrizable hyperbolic, but not strictly 
hyperbolic system. The characteristic equation has two zero 
eigenvalues, due to the fact that (6.8) leads to a fourth-order 
system which is not fully equivalent to (6.7) (see also Sec- 
tion 5.2 of [38]), and two nonzero eigenvalues & and 
-J’&, showing that one boundary condition is needed in 

BC2. For boundary condition BC2, Eq. (4.5), we have 

L(Yf, 7) = COS(U)T + c 

. [$ + z2/ccg + (w’/cc, - k2)]“2. (6.14) 

each x bn S. 
Now, for the normal mode analysis, consider solutions It is easily shown that BC2 renders the problem well-posed 

for ICL[ <n/2, and weakly ill-posed only for I~xI = 7r/2 (the 

(6.9) 
case of a solid wall boundary condition). 

BC3. For boundary condition BC3, Eq. (5.2), we have 
of the Klein-Gordon equation. In (6.9) 4, q, and t are com- 
plex numbers, and it is assumed that Re(5) B 0, Im(q) = 0, 
and Re(z) > 0. The dispersion relation is 

L(q, 7) = fi (cos(u,)7 + c 
,=I 

T2 = cc&” - $) - (co2 - k2cc,) (6.10) 
[~2+~2/~~,+(co2/~~~-k2)]“2). (6.15) 

or L = 0 if one of the factors is zero. Therefore, the results of 
BC2 apply here for CI = cli. Thus it may be concluded that 

l= [ q2 + T2/CCg + (w’/cc, - k2)] 1’2, (6.11) BC3 renders the problem well-posed if I cli 1 < n/2 (i = 1, 2). If 
CI~ = 7r/2 or ~1~ = 7c/2 (or both), then the problem is weakly 

where the root with non-negative real part is chosen. Note ill-posed. 

that Q+‘, ccg, and (w’/cc, - k2) are all real and non-negative. BC4. For boundary condition BC4, Eq. (5.6), we have 
Now, let the same results as for BC3. 

(6.12) 
Thus, all boundary conditions render the problem weakly 

ill-posed for CI = frc/2. This choice of M represents a solid 
wall or, in general, a boundary that fully reflects waves of 

be the homogeneous boundary condition; then the UKC norma1 incidence. 
demands that L(<(v], T), iv, 7) # 0 for well-posedness. Of the two first-order boundary conditions BCl and BC2 

the latter is to be preferred for two reasons: it renders the 
BCl. For boundary condition BCl, Eq. (4.3), we have problem well-posed for /cl/ < rr/2, whereas BCl does not, 

L(~,7)=7+c'cos(a)[$+72/CC, 
and for /cl1 = 7r/2 the problem is weakly ill-posed only for 
waves of tangential incidence (5 = 0) so that disturbances 

+ (~2/cc~-~2)]“2+c.sin(a) iv. (6.13) are confined to the boundary and will not propagate into 
the interior. Using BCl, the problem is also weakly ill-posed 

If LY = +x/2, then L = 0 for 7 = f cqi, i.e., a generalized 
eigenvalue exists, and the problem is weakly ill-posed. 

Now consider the case IaI <n/2. If Re(r) > 0, then 
Re(L(q, 7)) > 0 and hence the UKC is satisfied. If 7 = 0 we 
have L#O. For 7=/G and 7#0, discr=q2-/?‘/ccg+ 
(w’/cc, - k2) is real, and we have 

for waves of non-tangential incidence. For BC3 and BC4 the 
results of BC2 apply. 

Finally, it is noted that the use of the wave equation, or 
of Eq. (3.7) to eliminate the second normal derivative in 
(5.2) would lead to second-order boundary conditions 
which render the IBVP weakly ill-posed also for lcl, I < n/2 
(cf. BC4), so that errors are free to propagate from the 

discr > 0: 5 is real and positive, and Re(L) > 0. boundary into the interior. Hence BC4 is preferred. 

discr = 0: 5 is zero; L = 0 for sin(a) = -B/c?. Again we 
have a generalized eigenvalue. 7. THE INFLUENCE OF CORNERS 

discr < 0: 4 = f iy (y > 0). Considering lim Re(r) JO, 
with Re(5) 10 also, we see that we only have 

In the previous sections we examined the well-posedness 

to consider 5 = + iy as the limiting case 
of the half-space problem (6.7) with one of the boundary 

(incoming mode) for fl> 0, and 5 = - iy for 
conditions BCl-BC4 imposed on the infinite boundary 

b < 0. However, also in this case generalized 
x = 0. 

eigenvalues exist. 
In practical calculations, however, the computational 

domain is finite. Therefore the boundaries of the computa- 
Thus in general, BCl renders the problem weakly ill-posed. tional domain are also of finite length. To investigate the 
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x=0 

FIG. 3. A hyperbolic quarter-space problem. 

influence of finite boundaries, that is, of corners, consider 
the quarter-space problem (Fig. 3), 

a28 
- 2 + ccg v2$ - (0’ - k2cc,)$ = 0, 

x < 0, y < 0, t > 0, (7.1) 

L&.=O=O~ y < 0, t > 0, (7.2) 

L,&=O =O, x < 0, t > 0, (7.3) 

with proper initial conditions. (7.4) 

Well-posedness essentially requires that bounded solu- 
tions in space should not grow without a bound in time, as 
is stated in the second definition of well-posedness for the 
half-space problem. It is clear that therefore (7.1)-(7.4) can 
only be well-posed if each of the half-space problems is also 
well-posed: 

- -$ + cc, v2$ - (w2 - k2cc,)J = 0, 

x<o, YER, t>o, (7.5) 

LiLO=O~ y E R, t > 0, (7.6) 

with proper initial conditions, (7.7) 

and 

a? 
- dt2 + cc, v2$ - (w2 - k2cc,)J = 0, 

xE:R,y<O, t>o, 

~,bl,4 = 0, XE R, t>o, 

with proper initial conditions. 

(7.8) 

(7.9) 

(7.10) 

This assures that the boundary conditions at the boun- 
daries aQ, and LX2, do not admit any unstable solutions of 
the system. By continuity the field equation (7.1) and the 
boundary conditions (7.2) and (7.3) should be satisfied at 

the intersection point 0. However, using these boundary 
conditions in 0 as such, may cause instabilities, and some 
care has to be taken to impose the proper boundary condi- 
tion(s) at the corner point. 

For the first-order conditions BC2 at &Qi, for instance, no 
special treatment is needed in 0, but using the second-order 
condition BC3 will render the problem ill-posed. 

This corner problem was also considered by Engquist 
and Majda in [12]. For the wave equation they give a 
boundary condition in 0, which absorbs plane waves 
propagating along the diagonal x = y, and it is obvious that 
this idea can be used also for the Klein-Gordon equation. 

Engquist and Majda give no arguments why this condi- 
tion in 0 renders the problem well-posed. Hence we still 
have to investigate when unstable solutions can be 
generated at the intersection point, because in general, the 
introduction of a boundary (the intersection point) of the 
boundary (LX2,) may cause unstable solutions to exist within 
the subspace of the boundary &Qi, if this boundary 0 of X?, 
is not treated in a proper way. 

Considering the subspaces X?, we therefore demand that 
the IBVPs are also well-posed, 

asz,. 

q4,42 = 0, x < 0, t > 0, (7.11) 

with bound. cond. &,$I,= v =,, = 0, t > 0, (7.12) 

and proper initial conditions, (7.13) 

and 
a!s2. 

LLO = 0, y < 0, t > 0, (7.14) 

with bound. cond. LXO&= y= 0 = 0, t > 0, (7.15) 

and proper initial conditions. (7.16) 

Thus the problems in the subspaces a1;2, and &2, should 
be investigated for well-posedness in the same way as the 
original IBVP in Q. We make the following 

PROPOSITION 1. (Sufficient condition for quarter-space 
problem ). The quarter-space problem (7.1)-( 7.4) is well- 
posed, ifthe half-space problems (7.5)-(7.7) and (7.8)-(7.10), 
as well as the subspace problems (7.11)-( 7.13) and 
(7.14)-(7.16) are all well-posed. 

The requirements given in the proposition are rather 
severe, and very likely they can be relaxed somewhat, but 
this is left for future study. 

We will now use this proposition to study the well-posed- 
ness of some practical examples involving the absorbing 
boundary conditions BClLBCC 
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EXAMPLE 1. 

af2 .!2+c3T~o 
“at ay W2), (7.17) 

852 ~2!+c!!!Z=o 
2. at ax (BC2). (7.18) 

These equations reduce to ordinary differential equations in 
the subspaces ( 
needed in 0. 

EXAMPLE 2. 

aQl 

Bi, and no extra boundary conditions are 

a.!2+b act 
at2 ‘at ay 

4?Y++() 
ax2 (BC4), (7.19) 

aa .g=o 
2’ax (solid wall). (7.20) 

Assuming a periodic behaviour in normal (y-)direction, tie 
can write 6 on asz, as 

qiJ = eivy. $(x, t) (7.21) 

and substitute this into (7.19) to obtain the “field” equation 
for the subspace %2,, 

a’* 2 av a.,-c .-Q+f.*=o at on asz, (7.22) 

which is a hyperbolic equation in II/. This equation needs 
one boundary condition in 0. This condition is provided by 
applying (7.20) in 0, giving the boundary condition 

r3x=0 in . a* .. 

EXAMPLE 3. 

852 .a.!?Y+b.d3i! 
1. at2 at ay 

2 W 
-c .s+e.$=O (BC4), (7.24) 

aa .a.!?3t+~.i3t 
2. at2 at ax 

2 a? -c .v+e,$J=O (BC4). (7.25) 

Now we need a boundary condition in 0 for both equations. 

In Example 2 the condition on the other boundary provided 
the extra boundary condition in 0, but here this is not very 
convenient (especially in the discrete case) due to the 
second-order tangential derivatives. 

Therefore it is more convenient to derive a new boundary 
condition to be used in 0 to render the problem well-posed. 
Engquist and Majda’s boundary condition for the wave 
equation is 

,,hg+c($f+$)=O in 0. (7.26) 

Substituting (7.21) in this equation results in the following 
boundary condition in 0 for the hyperbolic problem 
on asz, : 

Ji$+c~+h*=O in 0. (7.27) 

This boundary condition renders the problem on 80, well- 
posed. For reasons of symmetry (7.26) can be used for ,352, 
as well. 

One can also use higher order conditions in 0, e.g., 

( a a 
cos(di)t+‘~ > 

x in 0. (7.28) 

If the cli are chosen in the interval (0,7c/2), both subspace 
problems will be well-posed, giving a well-posed quarter- 
space problem. 

8. CONCLUSIONS 

In this paper, absorbing boundary conditions have been 
derived to be used on artificial boundaries in free surface 
flow problems. After a review of several techniques of 
absorbing free surface waves, approximations of exact 
pseudodifferential operators were given as first- and second- 
order boundary conditions. The first-order condition BCl 
results in weakly ill-posed IBVPs for all choices ol, whereas 
BC2, and the second-order conditions BC3 and BC4 lead 
to weakly ill-posed models only for LY = +rr/2 and to well- 
posedness in all other cases. Theoretically, well-posedness is 
not guaranteed in case corners are present, but the proposed 
conditions can be used in practical calculations, as is shown 
in the numerical experiments in [39,4] and in the accom- 
panying paper [S]. In the latter paper a discretization of the 
absorbing boundary conditions will be treated in detail. 
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